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Abstract

A numerical method for computing Beltrami �elds is presented. This
method was suggested by the similarity between the Beltrami condition
and eigenvalue problems. A Beltrami �eld of interest is expanded into a
series of basis functions, similarly to how eigenvalue problems are handled
in solid-state physics. The result is a special eigenvalue equation. This
method is worked out for a plane wave basis. Solutions can be computed
numerically.
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1 Introduction

The Einstein-Cartan-Evans (ECE) theory [1, 2], which is based on Cartan ge-
ometry, completed Einstein's general relativity, and has continued to advance
many areas of physics. Beltrami �elds have been shown to be valid solutions
of the ECE �eld equations, which are Maxwell-like equations that have been
investigated in the UFT series of ECE papers (available on www.aias.us). The
characteristics of Beltrami �elds have also been described in a number of ECE
papers [3, 4], in which the Beltrami solutions were analytical functions for spe-
cial cases of application. In order to use Beltrami �elds in broader application
areas, a general solution method is desirable. Finite Element methods have been
developed [6,7], but they are based on highly specialized mathematical methods
that are not so easy to understand.

As an alternative, the method used in this paper is based on standard pro-
cedures of computational quantum chemistry and solid-state physics [5]. These
procedures lead to eigenvalue equations, and have already been used for com-
puting elementary particles in ECE theory [3]. In this paper, a practical com-
putational method for Beltrami �elds is developed in a comparable way, and it
can be implemented using a numerical package or a computer algebra system.
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2 Elaboration of the method

A Beltrami �eld F is de�ned by the relation

∇× F = κF, (1)

where κ is a constant. In general, κ could be allowed to be a scalar function,
but here we restrict ourselves to the constant case. Eq. (1) can be written in
the form

AF− κF = 0, (2)

where the operator A means ∇×.
The solution of this equation can be developed in the following way. We

start by considering the three vector components of F separately:

F =

F1

F2

F3

 . (3)

We then expand the components Fj by a set of basis functions φi(r):

Fj(r) =

N∑
i=1

cijφi(r) (4)

with development coe�cients cij . The coe�cients have two indices: i = 1 . . . N
is the index of functional expansion, and j = 1, 2, 3 denotes the components of
F. The aim is to �nd the coe�cients cij and eigenvalues κ.

The curl operator in cartesian coordinates is known to be

∇× F =

∂2F3 − ∂3F2

∂3F1 − ∂1F3

∂1F2 − ∂2F1

 , (5)

with partial derivatives ∂1 = ∂
∂X etc. Inserting Eq. (4) into the components of

(2) gives 3N equations

N∑
i=1

(ci3 ∂2φi − ci2 ∂3φi)−
N∑
i=1

κ ci1 φi = 0, (6)

N∑
i=1

(ci1 ∂3φi − ci3 ∂1φi)−
N∑
i=1

κ ci2 φi = 0, (7)

N∑
i=1

(ci2 ∂1φi − ci1 ∂2φi)−
N∑
i=1

κ ci3 φi = 0. (8)

In all equations, the functions φi appear without regard to the component index,
because all components are developed by the same set of functions.

To determine the coe�cients cij , we apply a variation principle that is used,
for example, to solve the Schrödinger equation in quantum mechanics [5]. To
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minimize the left sides of Eqs. (6-8), we expand the functions into the complex
plane and multiply them by an additional conjugate sum of type (cijφi)

∗:

N∑
j=1

(cj1 φj)
∗

(
N∑
i=1

(ci3 ∂2φi − ci2 ∂3φi)−
N∑
i=1

κ ci1 φi

)
= 0, (9)

N∑
j=1

(cj2 φj)
∗

(
N∑
i=1

(ci1 ∂3φi − ci3 ∂1φi)−
N∑
i=1

κ ci2 φi

)
= 0, (10)

N∑
j=1

(cj3 φj)
∗

(
N∑
i=1

(ci2 ∂1φi − ci1 ∂2φi)−
N∑
i=1

κ ci3 φi

)
= 0. (11)

After multiplying out the sums, we obtain the double sums

N∑
i,j=1

c∗j1 φ
∗
j (ci3 ∂2φi − ci2 ∂3φi)−

N∑
i,j=1

κ c∗j1 φ
∗
jci1 φi = 0, (12)

N∑
i,j=1

c∗j2 φ
∗
j (ci1 ∂3φi − ci3 ∂1φi)−

N∑
i,j=1

κ c∗j2 φ
∗
jci2 φi = 0, (13)

N∑
i,j=1

c∗j3 φ
∗
j (ci2 ∂1φi − ci1 ∂2φi)−

N∑
i,j=1

κ c∗j3 φ
∗
jci3 φi = 0. (14)

Rearranging the φ∗j 's gives

N∑
i,j=1

c∗j1
(
ci3 φ

∗
j∂2φi − ci2 φ∗j∂3φi

)
−

N∑
i,j=1

κ c∗j1 ci1 φ
∗
jφi = 0, (15)

N∑
i,j=1

c∗j2
(
ci1 φ

∗
j∂3φi − ci3 φ∗j∂1φi

)
−

N∑
i,j=1

κ c∗j2 ci2 φ
∗
jφi = 0, (16)

N∑
i,j=1

c∗j3
(
ci2 φ

∗
j∂1φi − ci1 φ∗j∂2φi

)
−

N∑
i,j=1

κ c∗j3 ci3 φ
∗
jφi = 0. (17)

Applying integration over the whole space gives

N∑
i,j=1

c∗j1

(
ci3

∫
φ∗j∂2φidτ − ci2

∫
φ∗j∂3φidτ

)
−

N∑
i,j=1

κ c∗j1 ci1

∫
φ∗jφidτ = 0,

(18)

N∑
i,j=1

c∗j2

(
ci1

∫
φ∗j∂3φidτ − ci3

∫
φ∗j∂1φidτ

)
−

N∑
i,j=1

κ c∗j2 ci2

∫
φ∗jφidτ = 0,

(19)

N∑
i,j=1

c∗j3

(
ci2

∫
φ∗j∂1φidτ − ci1

∫
φ∗j∂2φidτ

)
−

N∑
i,j=1

κ c∗j3 ci3

∫
φ∗jφidτ = 0.

(20)

The integrals depend only on the basis functions and their derivatives. To obtain
solutions for the coe�cients cik, we �rst apply the variational principle, thus
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deriving the three equations for c∗j1, c
∗
j2 and c∗j3. These derived equations then

have to be set to zero, which is already the case here from the de�nition of the
equations. Applying this procedure gives us

N∑
i,j=1

(
ci3

∫
φ∗j∂2φidτ − ci2

∫
φ∗j∂3φidτ

)
−

N∑
i,j=1

κ ci1

∫
φ∗jφidτ = 0, (21)

N∑
i,j=1

(
ci1

∫
φ∗j∂3φidτ − ci3

∫
φ∗j∂1φidτ

)
−

N∑
i,j=1

κ ci2

∫
φ∗jφidτ = 0, (22)

N∑
i,j=1

(
ci2

∫
φ∗j∂1φidτ − ci1

∫
φ∗j∂2φidτ

)
−

N∑
i,j=1

κ ci3

∫
φ∗jφidτ = 0. (23)

All three equations can be combined into one equation of the form

N∑
i,j=1

(
cik3

∫
φ∗j∂k2

φidτ − cik2

∫
φ∗j∂k3

φidτ

)
−

N∑
i,j=1

κ cik1

∫
φ∗jφidτ = 0,

(24)

where the indices (k1, k2, k3) are a cyclic permutation of (1, 2, 3).
The integrals only depend on the basis functions and represent structure

constants. We denote these by

B(j, i) =

∫
φ∗jφidτ (25)

and

D(j, i, k) =

∫
φ∗j∂kφidτ. (26)

Eq. (24) can then be written in the form

N∑
i,j=1

(cik3
D(j, i, k2)− cik2

D(j, i, k3))−
N∑

i,j=1

κ cik1
B(j, i) = 0. (27)

B represents the overlap integral of non-orthogonal basis functions. If the basis
set is orthogonal, we have

B(j, i) =

∫
φ∗jφidτ = δji, (28)

so that the double sum for B reduces to a single sum:

N∑
i,j=1

(cik3
D(j, i, k2)− cik2

D(j, i, k3))−
N∑
i=1

κ cik1
= 0. (29)

To further specify the eigenvalue equation, we choose a plane wave expansion
for the basis functions φi:

φG =
1√
N3

∑
G

eiG·x, (30)

where i is the imaginary unit, not to be confused with an index. The vector G
is now a three-dimensional indexing mechanism for the φ's. The G's are wave
vectors1, representing three-dimensional expansion coe�cients, and the phase

1In solid state physics, these are vectors of the reciprocal lattice.
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factor is

G · x = G1x1 +G2x2 +G3x3. (31)

As is well known, plane waves are orthogonal functions, so in this case:

B(G,G′) =
1

N3

∫ ∑
GG′

e−iG·xeiG
′·xdτ =

1

N3

∫ ∑
GG′

ei(G
′−G)·xdτ (32)

= δG′G = δGG′ .

With

∂me
iG·x = iGme

iG·x, (33)

the structure coe�cients become

D(G,G′,m) =

∫
e−iG·x ∂m eiG

′·xdτ (34)

=

∫
e−iG·x iG′me

iG′·xdτ

= iG′mδGG′ ,

where G′m, m=1,2,3, is the m-th coordinate of G′. In order to avoid confusion
of indices, we replace the imaginary unit i with I. Eq. (29) then reads

N∑
G; i=1

I (cik3
Gk2
− cik2

Gk3
)− κ

N∑
i=1

cik1
= 0. (35)

These are 3N equations for determining the coe�cients cik1,2,3 , representing an
eigenvalue equation with eigenvalues κ and eigenvectors cik1,2,3

. The eigenvalue
computation requires quadratic matrices, and therefore we obtain 3N eigenval-
ues and eigenvectors, numbered by the index j. Eq. (35) then becomes

N∑
G; i=1

I (cijk3
Gk2
− cijk2

Gk3
)− κj

N∑
i=1

cijk1
= 0. (36)

This equation has to be solved numerically.
The symmetries and boundary conditions of the de�nition space were spec-

i�ed by selecting suitable plane wave vectors G, and cartesian coordinates were
used for simplicity. This adaptation of solid-state physics procedures would
need to be modi�ed for speci�c applications. For example, for spheres, spheri-
cal polar coordinates would have to be used, along with spherical harmonics as
basis functions (also see [5]).

3 Summary

We have developed a numerical solution scheme for the Beltrami equation

∇× F = κF. (37)
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This method was illustrated using plane waves as basis functions for a series
expansion of F, and these basis functions had the form

φG =
1√
N3

∑
G

eiG·x. (38)

The resulting eigenvalue equation then has to be solved numerically, for example,
by using a numerical package like LAPACK, or a computer algebra system like
Mathematica.

In this way, we are able to construct Beltrami functions of arbitrary form
that could be used to describe parallel structures of vector �elds, for example,
to explain ball lightning or structures suitable for producing antigravity.
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