Finding Beltrami fields by an eigenvalue method
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Abstract

A numerical method for computing Beltrami fields is presented. This
method was suggested by the similarity between the Beltrami condition
and eigenvalue problems. A Beltrami field of interest is expanded into a
series of basis functions, similarly to how eigenvalue problems are handled
in solid-state physics. The result is a special eigenvalue equation. This
method is worked out for a plane wave basis. Solutions can be computed
numerically.
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1 Introduction

The Einstein-Cartan-Evans (ECE) theory [1,2], which is based on Cartan ge-
ometry, completed Einstein’s general relativity, and has continued to advance
many areas of physics. Beltrami fields have been shown to be valid solutions
of the ECE field equations, which are Maxwell-like equations that have been
investigated in the UFT series of ECE papers (available on www.aias.us). The
characteristics of Beltrami fields have also been described in a number of ECE
papers [3,4], in which the Beltrami solutions were analytical functions for spe-
cial cases of application. In order to use Beltrami fields in broader application
areas, a general solution method is desirable. Finite Element methods have been
developed [6,7], but they are based on highly specialized mathematical methods
that are not so easy to understand.

As an alternative, the method used in this paper is based on standard pro-
cedures of computational quantum chemistry and solid-state physics [5]. These
procedures lead to eigenvalue equations, and have already been used for com-
puting elementary particles in ECE theory [3]. In this paper, a practical com-
putational method for Beltrami fields is developed in a comparable way, and it
can be implemented using a numerical package or a computer algebra system.
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2 Elaboration of the method
A Beltrami field F is defined by the relation
V x F = &F, (1)

where x is a constant. In general, x could be allowed to be a scalar function,
but here we restrict ourselves to the constant case. Eq. (1) can be written in
the form

AF — kF = 0, (2)

where the operator A means V x.
The solution of this equation can be developed in the following way. We
start by considering the three vector components of F separately:
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We then expand the components F; by a set of basis functions ¢;(r):

N
Fy(r) = Zcij¢i(r) (4)
i—1

with development coefficients ¢;;. The coefficients have two indices: ¢ =1... N
is the index of functional expansion, and j = 1, 2,3 denotes the components of
F. The aim is to find the coefficients c;; and eigenvalues .

The curl operator in cartesian coordinates is known to be

82F3 — (3'3F2
V xF = 83F1—5'1F3 s (5)
O1Fy — 021y

with partial derivatives 0y = 3% etc. Inserting Eq. (4) into the components of
(2) gives 3N equations
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In all equations, the functions ¢; appear without regard to the component index,
because all components are developed by the same set of functions.

To determine the coefficients c;;, we apply a variation principle that is used,
for example, to solve the Schrédinger equation in quantum mechanics [5]. To



minimize the left sides of Egs. (6-8), we expand the functions into the complex
plane and multiply them by an additional conjugate sum of type (c;;¢;)*:
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After multiplying out the sums, we obtain the double sums
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Rearranging the ¢}’s gives
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Applying integration over the whole space gives
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The integrals depend only on the basis functions and their derivatives. To obtain
solutions for the coefficients c;i, we first apply the variational principle, thus



deriving the three equations for c;, ¢j, and cj;. These derived equations then
have to be set to zero, which is already the case here from the definition of the
equations. Applying this procedure gives us
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All three equations can be combined into one equatlon of the form
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where the indices (k1, k2, k3) are a cyclic permutation of (1,2, 3).
The integrals only depend on the basis functions and represent structure
constants. We denote these by

i) = / O pidr (25)

and
DG.i.k) = [ 60u0udr. (26)
Eq. (24) can then be written in the form
N
Z (Ciks D(4, 7, k2) — cir, D (3,4, k3)) Z K Ciky B(j, 1) = 0. (27)
i,j=1 3,7=1

B represents the overlap integral of non-orthogonal basis functions. If the basis
set is orthogonal, we have

i) = / o1 udr = b5, (28)

so that the double sum for B reduces to a single sum:
N
Z (Ciks D(J, 0, k2) — i, D(4, 1, k3)) Zli ik, = 0. (29)
i,j=1
To further specify the eigenvalue equation, we choose a plane wave expansion
for the basis functions ¢;:

¢G iG- x (30)

AT
where 7 is the imaginary unit, not to be confused with an index. The vector G
is now a three-dimensional indexing mechanism for the ¢’s. The G’s are wave
vectors', representing three-dimensional expansion coefficients, and the phase

n solid state physics, these are vectors of the reciprocal lattice.



factor is
G-x= G1x1 + GQIQ + G3I3. (31)

As is well known, plane waves are orthogonal functions, so in this case:
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With
Ome'C™* = iG,,e' G, (33)
the structure coefficients become
D(G,G',m) = /eﬂ‘G'x O €S *dr (34)
= /e*iG'x iGl "G X dr
=G, dca,

where G/, m=1,2,3, is the m-th coordinate of G’. In order to avoid confusion

of indices, we replace the imaginary unit ¢ with 7. Eq. (29) then reads

N N
Z 1 (Cikg,Gkg — CikgGkg) — chilﬁ =0. (35)
G; i=1 i=1

These are 3N equations for determining the coefficients c;, , ,, representing an
eigenvalue equation with eigenvalues x and eigenvectors c;, , ,. The eigenvalue
computation requires quadratic matrices, and therefore we obtain 3N eigenval-
ues and eigenvectors, numbered by the index j. Eq. (35) then becomes

N N
> T (CijisGry = CijiyGis) = K5 Y Cijhy = 0. (36)
G; i=1 i=1

This equation has to be solved numerically.

The symmetries and boundary conditions of the definition space were spec-
ified by selecting suitable plane wave vectors G, and cartesian coordinates were
used for simplicity. This adaptation of solid-state physics procedures would
need to be modified for specific applications. For example, for spheres, spheri-
cal polar coordinates would have to be used, along with spherical harmonics as
basis functions (also see [5]).

3 Summary
We have developed a numerical solution scheme for the Beltrami equation

V x F = &F. (37)



This method was illustrated using plane waves as basis functions for a series
expansion of F, and these basis functions had the form

e e, (38)
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The resulting eigenvalue equation then has to be solved numerically, for example,
by using a numerical package like LAPACK, or a computer algebra system like
Mathematica.
In this way, we are able to construct Beltrami functions of arbitrary form
that could be used to describe parallel structures of vector fields, for example,
to explain ball lightning or structures suitable for producing antigravity.
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