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Abstract

According to statements by Milkovic and various inventors of roto-
verter systems, it should be possible to extract energy from rotating sys-
tems with at least two revolving or oscillating units, which corresponds
to a mechanism for extracting space energy. We base our work on the ap-
proach of an anonymous author who calculated the dynamics of a double
pendulum according to classical mechanics. With a certain load charac-
teristic, it gains energy. We have proven that the author did not use the
underlying equations of motion correctly when applying an external load.
If put into canonical, i.e., the intended way, there is no energy gain. We
have investigated this for different types of load momenta. Such a system
can only serve as a source of energy, if one adopts non-conventional phys-
ical mechanisms. For this, a “space-time resonance” was used according
to the ECE theory. This then results in chaotic behavior, which, on aver-
age, leads to a significant gain in energy, with constant useful power being
withdrawn from the system.
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1 Introduction

In the context of research into alternative energy sources from space (vacuum
energy, zero point energy, space energy), there are approaches that attempt to
gain additional energy from mechanical systems. The first known system of this
type was the Bessler wheel. More recently, the Milkovic [1] pendulum and the
Würth [2] gearbox have become known. However, there is still no clear evi-
dence of an energy gain with these devices. There are considerations of a more
qualitative kind to make an energy gain plausible. These considerations come
from engineers and inventors who mostly consider purely static configurations.

1email: mail@horst-eckardt.de
2email: mail@bernhard-foltz.de

1



Mechanical devices are dynamic systems because the internal forces and posi-
tions of the parts that make them up change over time. Therefore, a complete
description of the functionality is only possible using dynamic considerations
and models.

The dynamics of mechanical systems can be described very elegantly with
methods of classical mechanics. If the models are structured simply enough,
i.e. if it is a system of mass points, one uses the Lagrange theory, which goes
back to Leonhard Euler (1707-1783) and Joseph-Louis Lagrange (1736-1813).
The equations of motion are therefore called Euler-Lagrange equations. William
Rowan Hamilton (1805-1865) later brought it into a form that is now very useful
for numerical solution on the computer.

When it comes to systems of extended solids, be they rigid or deformable
bodies, the newer finite element method is used. This is very computationally
intensive. It has been used very successfully in engineering since the advent of
modern computers.

As part of an attempt to explain a possible excess energy in the Milkovic
pendulum, an anonymous author carried out a Lagrangian calculation [3]. To
the best of our knowledge, this is the most in-depth analysis of this system. We
checked the calculation, but found a serious modeling error by the author. That
makes his results, which actually show an energy surplus, quite questionable.
As a second system, which is based on the principle of the double pendulum,
we examined the planetary gear according to Würth [2]. These results will
be reported in a subsequent paper. This is probably the first time that such
considerations have been made at this modeling depth. In the following, we first
briefly describe the application class of the double pendulum and the Lagrange
method before we go into the results of the double pendulum.

2 Calculation method of the double pendulum

A double pendulum consists of two pendulums that are attached to one another
and each have a pendulum body with a mass. When impacted in a vertical
position, these masses perform unpredictable oscillations, it is a well-known
example of a chaotic system. According to the Lagrange theory, the description
requires coordinates that correspond to the number of degrees of freedom. Here
it is the angular deflections ϕ1 and ϕ2 from the vertical, see Fig. 1. To calculate
the Lagrangian

L = T − U (1)

one needs the kinetic energy T and the potential energy U of the two masses.
The easiest way to get the kinetic energy is from the Cartesian coordinates. It
is according to Fig. 1:

x1 = l1 sin(ϕ1), (2)

y1 = −l1 cos(ϕ1), (3)

and

x2 = x1 + l2 sin(ϕ2), (4)

y2 = y1 − l2 cos(ϕ2). (5)
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This gives the kinetic energy of the masses m1 and m2:

T1 =
1

2
m1(ẋ21 + ẏ21), (6)

T2 =
1

2
m2(ẋ22 + ẏ22), (7)

T = T1 + T2. (8)

Figure 1: Coordinates of the double pendulum.

The point denotes the time derivatives. The potential energy follows from
the force of gravity in the y direction:

U = m1g y1 +m2g y2 (9)

with the gravitational acceleration g. The Lagrange function (1) is thus com-
pletely determined. The equations of motion follow from the Euler-Lagrange
equations, where qi stands for the coordinates ϕ1 and ϕ2:

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0. (10)

Conservation of energy applies to these equations, because they are derived
from there. In addition, one can introduce so-called dissipation functions Di

and generalized forces Qi. A generalized force in our case is a torque. Then the
equations take the form:

d

dt

∂L

∂q̇i
− ∂L

∂qi
+
∂Di

∂q̇i
= Qi (11)

and there is no longer any conservation of energy. We need this case here, since
the system is supposed to provide additional energy. The dissipation functions
can be replaced by

QRi = −∂Di

∂q̇i
(12)
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and be traced back to generalized forces, with QRi denoting any residual forces
that are not covered by the dissipation function.

The evaluation of equations (10) can lead to very complicated equations of
motion. In the case of the double pendulum, they are just about manageable.
In other cases, such as the planetary gear, they are so complicated that it
is no longer possible to calculate them by hand. We use the computer algebra
system Maxima for this. The Euler-Lagrange equations are 2 coupled differential
equations for the variables ϕ̈1 and ϕ̈2. They are linear in these two variables
and have to be solved for these so that the numerical solution (time integration)
can be carried out. The following equations then result:

ϕ̈1 =
[

(l1 l2m2 sin (ϕ2) cos (ϕ2 − ϕ1)− (l1 l2m2 + l1m1 l2) sin (ϕ1)) g

+
(
l21 l2m2 ϕ̇

2
1 cos (ϕ2 − ϕ1) + l1 l

2
2m2 ϕ̇

2
2

)
sin (ϕ2 − ϕ1)

− l1Q2 cos (ϕ2 − ϕ1) + l2Q1

]
· 1

l21 l2m2 sin (ϕ2 − ϕ1)
2

+ l21 l2m1

, (13)

ϕ̈2 =
[ ((

l1 l2m
2
2 + l1m1 l2m2

)
sin (ϕ1) cos (ϕ2 − ϕ1)−

(
l1 l2m

2
2 + l1m1 l2m2

)
sin (ϕ2)

)
g

+
((
−l21 l2m2

2 − l21m1 l2m2

)
ϕ̇2
1 − l1 l22m2

2 ϕ̇
2
2 cos (ϕ2 − ϕ1)

)
sin (ϕ2 − ϕ1)

−Q1 l2m2 cos (ϕ2 − ϕ1) + l1Q2m2 + l1m1Q2

]
· 1

l1 l22m
2
2 sin (ϕ2 − ϕ1)

2
+ l1 l22m1m2

. (14)

3 Results

3.1 Verification and comparison with [3]

The aim of our calculations was initially to verify the results of the work [3]. We
first compared the equations of motion cited in the reference work with ours.
There was no complete match. The anonymous author has not given the source
of his equations and only speaks of “literature”. Since this literature comes with
certainty from the time when there was no computer algebra, it cannot be ruled
out that there is a calculation error. It wouldn’t be the first time such errors
have been found in textbooks.

For comparison, we used the same parameters for the double pendulum as
the anonymous author, see Table 1. Here ω1,2 is to be equated with the angular
velocity ϕ̇1,2. The calculation was initially carried out without external forces
and without gravitation. The initial angular velocity of the second pendulum
is 50 Hz, so it is quite fast. In his Fig. 2, in addition to the time course for ω1,
the author also gives a “Pivot Torque” and a “Pivot Power”, i.e., a torque and
a power on the fixed axis, which he calculates as follows:

τpivot torque = m1l
2
1ϕ̈1, (15)

Ppivot power = m1l
2
1ϕ̈1ω1. (16)
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m1 1 kg
m2 0.1 kg
l1 0.2 m
l2 0.1 m
ϕ1,initial 0
ϕ2,initial 0
ω1,initial 0
ω2,initial 100·π rad/s

Table 1: Parameters and initial values for calculating the double pendulum.

This is where the accelerations on the axis appear. We have also evaluated these
variables and shown them in Fig. 2. The angular velocity ω2 results from the
initial values and is exactly the same as in Fig. 2 of the reference document.
Torque and power are a few percent lower, but otherwise the same. That may
be an influence of the different equations of motion. Each of torque and power
cancel each on average over time. The author speaks of reactive power. This
has to be the case, since no power is taken out of the system.

Next, we look at the energy balance. Since we have neither external forces
nor gravity, there are only kinetic energy contributions that have to be constant
in sum for both masses. This is the case, as can be seen from Fig. 3. The sum
corresponds to the initial rotation of the second mass of 50 Hz, which is a little
over 49 joules. The same curve is found as Figure 3 in the reference document.
So far, there is agreement.

Figure 2: Angular velocity [rad/s], Pivot torque [Nm] und Pivot power [W].
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Figure 3: Kinetic energies [J] of both masses and total energy.

Figure 4: Kinetic energies [J] of both masses and total energy for external load,
canonical form.
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Figure 5: Kinetic energies [J] of both masses and total energy for external load.
afterh [3].

We now apply an external load (a braking torque) to the fixed axis. This is
modeled as a generalized force in the form

Q1 = − µ
l1
ω1, (17)

where µ is a constant. We do this based on the work [3]. The braking torque is
proportional to the angular velocity. The calculation with µ = 1 shows that the
total energy decreases exponentially, see Fig. 4. At the same time, the frequency
slows down. The rotational energy of the outer, fast pendulum is transferred
to the inner pendulum, from where it is removed from the system by the load
torque. The fact that the braking torque, which only acts on the axis of the
first pendulum, also acts on the outer pendulum, can be seen directly from the
equation of motion (14). In addition to Q2 (not used here), this equation also
contains the braking torque Q1.

The anonymous author of [3] received completely different results for the
braking torque (14). He did not use the concept of generalized force as prescribed
by the Lagrange theory, but changed equation (13) for the acceleration of ϕ1 a
posteriori by making the replacement:

ϕ̈1 → ϕ̈1 +
µ

l1
ω1. (18)

Here the parameter µ has different physical units than in (17), but that is not
decisive. As a result of this arbitrary substitution, the braking torque only acts
on the movement of the inner pendulum and the rotation of the outer pendulum
is not affected. Our calculation with this approach results in the energy curve
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of Fig. 5, which is identical to that of Fig. 6 in [3]. The total energy only
decreases slightly at the beginning and then remains constant. Only the form of
oscillation changes; the oscillation frequencies are doubled due to the external
braking torque. As we have explained, this is an arbitrary intervention in the
“physics” of the double pendulum. Therefore, all results in [3] based on this are
unfortunately to be regarded as unphysical.

3.2 Effect of different load torques

We can investigate how the load torque has to be changed so that there may
be an increase in energy, if one uses the correct equations of motion. With the
approach

Q1 = − µ
l1
|ω1| (19)

(modulus of ω1) and µ = 0.1 the result of Fig. 6 come out. A phase change
occurs for both pendulums, whereby – after an initial decrease in the total energy
– there is a gain. The question is whether this corresponds to an energy gain
in the overall system or whether this increase is due to the supply of external
energy. To this end, we examine the external torque or braking torque τext and
the input or output power Pext. The following applies:

τext = Q1 = − µ
l1
|ω1|, (20)

Pext = τextω1. (21)

Both are shown in Fig. 7. The torque, based on the modulus in Eq. (20), is
always negative. For the phases in which the angular velocity ω1 is also negative,
this leads to a torque of the same sign, i.e. the mass m1 is driven in this direction
and the angle even reverses the direction. Accordingly, the performance (21) is
positive, i.e. energy is supplied, as can be seen from Fig. 7. So this is a drive
effect, the system does not provide any energy gain.

One can avoid the drive phase by only using real braking phases for the
braking torque:

τext = Q1 =

{
− µ
l1
ω1 f”ur ω1 > 0,

0 else.
(22)

Then the total energy adjusts to a final value after an initial braking phase, as
shown in Fig. 8 for µ = 0.1. The external energy flow can be determined via
the integral

Eext =

∫
Pextdt. (23)

The numerical evaluation in Fig. 9 shows that initially energy actually flows
away (negative values), but then the energy remains constant, i.e., the drain
has ”dried up”. So there is no energy gain to be drawn from the system itself
in this way.
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Figure 6: Kinetic energies of both masses and total energy for load (19).

Figure 7: External load torque and power for load (19).
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Figure 8: Kinetic energies of both masses and total energy for load (20).

Figure 9: Externally released energy for load (20).
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3.3 Effect of interaction with “space energy”

To get the desired effect of energy gain we have to consider mechanisms that
cannot be found in conventional physics. We assume a resonance mechanism
for this, which is predicted by the ECE theory [4–6]. This mechanism was
calculated for electromagnetic systems, but due to the complete equivalence
between electromagnetic and mechanical systems, it also applies to dynamics.
According to Eq. (20) in [6], the resonance equation applies there

∂2A

∂t2
+ ωt

∂A

∂t
+
∂ωt
∂t

A =
1

ε0
J, (24)

where A is the vector potential, J is the electrical current density and ωt is the
spin connection (a frequency) of Cartan geometry. Applied to mechanics, this
equation reads:

∂2Q

∂t2
+ ωt

∂Q

∂t
+
∂ωt
∂t

Q = GJm, (25)

where Q is the mechanical equivalent of the vector potential, Jm is the mass flow
density and G is the Einstein constant. Q has the units of a velocity, one can
consider it as “aether flow”. If we restrict ourselves to the rotation component
(the ϕ componentQϕ) of Q and assume a linear time dependence of ωt, this
equation can be written as:

d2Qϕ
dt2

+ α
dQϕ
dt

+ ω2
0Qϕ = GJϕ, (26)

and with a periodic excitaiton Jϕ = GJ0 cos(ωt):

d2Qϕ
dt2

+ α
dQϕ
dt

+ ω2
0Qϕ = GJ0 cos(ωt). (27)

This is the equation of a damped resonance with a resonance frequency ω0 and
a damping constant α. The solution to this differential equation is:

Qϕ = GJ0
αω sin (ωt) +

(
ω0

2 − ω2
)

cos (ωt)

(ω2
0 − ω2)2 + α2ω2

. (28)

For α ≈ 0 the solution is simplified to

Qϕ = GJ0
cos (ωt)

ω2
0 − ω2

, (29)

which means a resonance increase of Qϕ of infinite, i.e. arbitrarily high strength.
We now apply this to the double pendulum. We assume that the outer pendulum
rotates relatively quickly, as assumed in the previous calculations. Then it makes
sense to assume an energy transfer due to the rotational potential Qϕ. In the
Lagrange formalism, this then appears as the external torque Q2:

Q2 = Qϕ = GJ0
αω2 sin (ω2t) +

(
ω0

2 − ω2
2
)

cos (ω2t)

(ω2
0 − ω2

2)2 + α2ω2
2

. (30)

We have set ω = ω2, the angular velocity of the outer pendulum. So that an
influence of Q2 becomes visible, we have to place the initial value of ω2 close to
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the resonance frequency ω0. In addition, we assume a decrease in energy due to
deceleration on the central axis of rotation, as previously applied by Eq. (17):

Q1 = − µ
l1
ω1. (31)

The new constants and initial values are listed in Table 2, resulting in the
kinetic energy curve shown in Fig. 10. The resonance structure of Q2 creates
chaotic behavior in parts, which makes numerical stability of the result difficult.
However, the solution shown could be reproduced qualitatively when the time
integration step size ∆t was varied. In Fig. 10, the kinetic energy calculated
from the initial conditions is also shown. You can see that the resonance provides
a significant amount of additional energy, except in an initial transient range.

µ 0.05
GJ0 50 000
α 5.0
ω0 11·π
ω2,initial 10·π

Table 2: Parameters and modified initial values for calculating the space energy
effect.

Since we have taken the braking force into account, the energy increase
takes place with the release of useful energy. This was calculated according
to Eq. (23) (as for Fig. 9) and is shown in Fig. 11. After a settling phase,
an approximately constant amount of energy per time unit is emitted, i.e., we
can withdraw a constant continuous output from the system. We have thus
found a possible mechanism for a double pendulum that is fed by space energy,
provided that the prediction made by the ECE theory actually applies and can
be demonstrated in the experiment.

4 Summary

The extraction of power from a system with two coupled, vibrating units,
claimed by Milkovic and the anonymous author, could not be confirmed in
this study. Different approaches to power extraction always lead to a decrease
in rotational energy, i.e., a conservation of the total energy. This is no different
to be expected from classic rotating systems. Such a system can only generate
energy from itself, if it is in exchange with an external energy reservoir. Such a
reservoir is the space energy of the non-empty vacuum. The model calculation
has shown that rotary fields of the vacuum can provide such an effect. Even
if some inventors claim to have found such an energy source, scientific verifica-
tion is still pending. This includes the reproducibility and repeatability of such
experiments.
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Figure 10: Kinetic energies of both masses, total energy and initial energy Ekinit
with spatce energy coupling.

Figure 11: Externally emitted energy with space energy coupling.
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