Magnetic dipole fields and current loops

M. W. Evans, H. Eckardt Civil List, A.I.A.S. and UPITEC

(www.webarchive.org.uk, www.aias.us, www.atomicprecision.com, www.upitec.org)

3 Numerical analysis and graphics

3.1 Dipole field (far field of magnetic current loop)

$$\mathbf{A} = \frac{I \, a^2 \, \mu_0}{4(X^2 + Y^2 + Z^2)^{\frac{3}{2}}} \begin{bmatrix} -Y \\ X \\ 0 \end{bmatrix} \tag{41}$$

$$\boldsymbol{\omega} = \begin{bmatrix} -\frac{z^2 - 2y^2 + x^2}{x(z^2 + y^2 + x^2)} \\ -\frac{z^2 + y^2 - 2x^2}{y(z^2 + y^2 + x^2)} \\ \frac{3z}{z^2 + y^2 + x^2} \end{bmatrix}$$
(42)

$$\mathbf{B} = \frac{I a^2 \mu_0}{4(X^2 + Y^2 + Z^2)^{\frac{5}{2}}} \begin{bmatrix} 3XZ \\ 3YZ \\ 2Z^2 - X^2 - Y^2 \end{bmatrix}$$
(43)

$$\nabla \times \mathbf{B} = \mathbf{0} \tag{44}$$

Figs. 1-3

3.2 Field of a magnetic current loop

Figs. 4-7

3.3 Constant magnetic field from non-constant potential

$$\mathbf{A} = \frac{B_0}{4} \begin{bmatrix} -Y \\ X \\ \frac{Z^3}{XY} \end{bmatrix} \tag{45}$$

^{*}email: emyrone@aol.com

 $^{^\}dagger email:$ mail@horst-eckardt.de

$$\boldsymbol{\omega} = \begin{bmatrix} -\frac{1}{X} \\ -\frac{1}{Y} \\ 0 \end{bmatrix} \tag{46}$$

$$\mathbf{B} = \begin{bmatrix} 0 \\ 0 \\ B_0 \end{bmatrix} \tag{47}$$

$$\boldsymbol{\omega} \times \mathbf{A} = \frac{B_0}{2} \begin{bmatrix} -\frac{Z^3}{2XY^2} \\ \frac{Z^3}{2X^2Y} \\ -1 \end{bmatrix}$$
 (48)

$$\nabla \times \mathbf{A} = \frac{B_0}{2} \begin{bmatrix} -\frac{Z^3}{2XY^2} \\ \frac{Z}{2X^2Y} \\ 1 \end{bmatrix}$$

$$\tag{49}$$

$$\nabla \times \mathbf{B} = \mathbf{0} \tag{50}$$

$$\nabla \times \mathbf{B}_{2} = -\frac{B_{0}}{2} \begin{bmatrix} \frac{3Z^{2}}{2X^{2}Y} \\ \frac{3Z^{2}}{2XY^{2}} \\ \frac{Z^{3}(X^{2}+Y^{2})}{X^{3}Y^{3}} \end{bmatrix}$$
 (51)

Figs. 8-12

Figure 1: ${\bf A}$ field of far field dipole, XY plane.

Figure 2: ω field of far field dipole, XZ plane.

Figure 3: ${\bf B}$ field of far field dipole, XZ plane.

Figure 4: ${\bf A}$ field of magnetic current loop, XY plane.

Figure 5: ω field of magnetic current loop, XZ plane.

Figure 6: ${f B}$ field of magnetic current loop, XZ plane.

Figure 7: Current density ${\bf J}$ of magnetic current loop, XY plane (notice alternating directions).

Figure 8: **A** field of special case, XY plane with Z=1.

Figure 9: **A** field of special case, XZ plane with Y=0.1.

Figure 10: ω field of special case, XY plane.

Figure 11: Magnetic field component $\boldsymbol{\omega} \times \mathbf{A},$ field of special case, XY plane with Z=-1.

Figure 12: Current component J_2 , field of special case, XZ plane with Y=0.1.